IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation
نویسندگان
چکیده
The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies.
منابع مشابه
Correction: IBMPFD Disease-Causing Mutant VCP/p97 Proteins Are Targets of Autophagic-Lysosomal Degradation
[This corrects the article DOI: 10.1371/journal.pone.0164864.].
متن کاملInclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation.
Mutations in the AAA+ protein (ATPase associated with a variety of cellular activities) p97/VCP (valosin-containing protein) cause a dominantly inherited syndrome of inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia (IBMPFD). p97/VCP is a ubiquitously expressed protein that participates in a number of cellular processes including endoplasmic reticulum-associa...
متن کاملInclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy.
Inclusion body myopathy associated with Paget's disease of the bone and fronto-temporal dementia (IBMPFD) is a progressive autosomal dominant disorder caused by mutations in p97/VCP (valosin-containing protein). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and participates in multiple cellular processes. One particularly important role for p97/...
متن کاملImbalances in p97 co-factor interactions in human proteinopathy.
The ubiquitin-selective chaperone p97 is involved in major proteolytic pathways of eukaryotic cells and has been implicated in several human proteinopathies. Moreover, mutations in p97 cause the disorder inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD). The molecular basis underlying impaired degradation and pathological aggregation of ubiquitinated protei...
متن کاملVCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD.
VCP (VCP/p97) is a ubiquitously expressed member of the AAA(+)-ATPase family of chaperone-like proteins that regulates numerous cellular processes including chromatin decondensation, homotypic membrane fusion and ubiquitin-dependent protein degradation by the proteasome. Mutations in VCP cause a multisystem degenerative disease consisting of inclusion body myopathy, Paget disease of bone, and f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016